4,015 research outputs found

    Stress dependence of the magnetic properties of steels

    Get PDF
    It is well known that the magnetic properties of ferromagnetic materials are sensitive to microstructural and mechanical changes. Variations in applied stress, composition, and geomrtry will, either alone or in combination with each other, cause the magnetization process to change. The primary way to monitor changes in the magnetization process is to run the material or component of interest through a hysteresis cycle and plot the magnetic response on the B,H (magnetic induction, magnetic field) plane. The result is a hysteresis loop, a typical example of which is given in Figure 1.1. The figure also shows a number of parameters that are used to describe the hysteresis loop. The coercivity (Hc) ~s the magnetic field value as the induction passes through zero. The remanence (Br) is the induction value as the magnetic field passes through zero. The maximum differential permeability (μ\u27max) is the slope of the loop as it passes through the coercivity. The hysteresis loss (Wb) is the area enclosed by the loop. The initial differential permeability (μ\u27in) is the slope of the curve just at the start of magnetization from the demagnetized condition. The maximum or saturation induction (Bmax) is the largest induction value

    Magnetomechanical effect in nickel and cobalt

    Get PDF
    The change in magnetization as a result of applied uniaxial stress has been measured in nickel and cobalt. Both tensile and compressive stresses were applied up to 125 MPa. Magnetostriction and anhysteretic magnetization as a function of stress were also measured. The change in magnetization with stress depended on the applied stress and the displacement between the prevailing magnetization and anhysteretic. At the loop tips, nickel showed a +6 mT (compression) and −6 mT (tension) magnetization change while cobalt displayed a +15 mT (compression) and −15 mT (tension) magnetization change. At remanence,nickel decreased in magnetization by 45 mT under either sign of stress, while cobalt decreased by 20 mT also under either sign of stress. Magnetomechanical changes in magnetization near the loop tips were mostly reversible, while at remanence the magnetomechanical change was predominately irreversible. Cobalt generally displayed larger changes in magnetization with stress than nickel at locations close to the loop tips, while the converse was true at locations near remanence. The results confirm the hypothesis that the magnetomechanical effect(dM/dσ) depends on the displacement between the anhysteretic and prevailing magnetization

    VLA Observations of the Infrared Dark Cloud G19.30+0.07

    Full text link
    We present Very Large Array observations of ammonia (NH3) (1,1), (2,2), and CCS (2_1-1_0) emission toward the Infrared Dark Cloud (IRDC) G19.30+0.07 at ~22GHz. The NH3 emission closely follows the 8 micron extinction. The NH3 (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of ~10 to 20K and NH3 column densities of ~10^15 cm^-2. The estimated total mass of G19.30+0.07 is ~1130 Msun. The cloud comprises four compact NH3 clumps of mass ~30 to 160 Msun. Two coincide with 24 micron emission, indicating heating by protostars, and show evidence of outflow in the NH3 emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4GHz emission suggests that the IRDC contains no bright HII regions, and places a limit on the spectral type of an embedded ZAMS star to early-B or later. From the NH3 emission we find G19.30+0.07 is composed of three distinct velocity components, or "subclouds." One velocity component contains the two 24 micron sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH3 and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH3 predominantly in the high-density clumps, and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.Comment: 29 pages, 9 figures, accepted for publication by ApJ. Please contact the authors for higher resolution versions of the figure

    Measurements of magnetic circuit characteristics for comprehension of intrinsic magnetic properties of materials from surface inspection

    Get PDF
    A transfer function is presented for calculating magnetic field and flux density inside a test material as a result of surface measurement. By considering flux leakage, we introduce a parameter η, called the leakage coefficient, which can be experimentally determined. It is introduced into the equations to make the transfer function more practical. The distribution of field inside a test material is then discussed in accordance with a surfacemagnetic charge model

    Role of Peptide Backbone Conformation on Biological Activity of Chemotactic Peptides

    Get PDF
    To investigate the role of peptide backbone conformation on the biological activity of chemotactic peptides, we synthesized a unique analog of N-formyl-Met-Leu-Phe-OH incorporating the C α,α disubstituted residue, dipropylglycine (Dpg) in place of Leu. The conformation of the stereochemically constrained Dpg analog was examined in the crystalline state by x-ray diffraction and in solution using NMR, IR, and CD methods. The secretagogue activity of the peptide on human neutrophils was determined and compared with that of a stereochemically constrained, folded type II β-turn analog incorporating 1-aminocyclohexanecarboxylic acid (Ac6c) at position 2 (f-Met- Ac6c -Phe-OMe), the parent peptide (f-Met-Leu-Phe-OH) and its methyl ester derivative (f-Met-Leu-Phe-OMe). In the solid state, the Dpg analog adopts an extended β-sheet-like structure with an intramolecular hydrogen bond between the NH and CO groups of the Dpg residue, thereby forming a fully extended (C5) conformation at position 2. The ϕ and ψ values for Met and Phe residues are significantly lower than the values expected for an ideal antiparallel beta conformation causing a twist in the extended backbone both at the N and C termini. Nuclear magnetic resonance studies suggest the presence of a significant population of the peptide molecules in an extended antiparallel β conformation and the involvement of Dpg NH in a C5 intramolecular hydrogen bond in solutions of deuterated chloroform and deuterated dimethyl sulfoxide. IR studies provide evidence for the presence of an intramolecular hydrogen bond in the molecule and the antiparallel extended conformation in chloroform solution. CD spectra in methanol, trifluoroethanol, and trimethyl phosphate indicate that the Dpg peptide shows slight conformational flexibility, whereas the folded Ac6c analog is quite rigid. The extended Dpg peptide consistently shows the highest activity in human peripheral blood neutrophils, being approximately 8 and 16 times more active than the parent peptide and the folded Ac6c analog, respectively. However, the finding that all four peptides have ED50 (the molar concentration of peptide to induce half-maximal enzyme release) values in the 10(-8)-10(-9) M range suggests that an induced fit mechanism may indeed be important in this ligand-receptor interaction. Moreover, it is also possible that alterations in the backbone conformation at the tripeptide level may not significantly alter the side chain topography and/or the accessibility of key functional groups important for interaction with the receptor
    • …
    corecore